

Specifications for LCD module

Customer	
Customer part no.	
Ampire part no.	AM-480272MMTMQW-T51H-I
Approved by	
Date	

- **□**Approved For Specifications
- □Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116號 4樓(東方科學園區 A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
	Emil	

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2015/12/23		New Release	Jessica

1. FEATURES

- Construction: An amorphous silicon TFT-LCD with driving system, stainless (1) bezel, and white LED backlight.
- LCD type: Transmissive, Normally White. (2)
- (3) Interface: 24bit RGB interface
- Power Supply Voltage: 3.3V power input for TFT, built-in power supply circuit. (4)
- (5) RoHS Compliance
- (6) Capacitive Touch Panel
- (7) Driver IC: ST7282T

Date: 2015/12/23

2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
Display size (diagonal)	4.3	inch
Resolution	480 RGB(H) x 272(V)	Dot
Display area	95.04 (H) x 53.856 (V)	mm
Pixel pitch	0.198 (H) x 0.198 (V)	mm
Overall dimension	105.5 x 67.2 x 4.738 (Typ.)	mm
Color configuration	R.G.B Vertical stripe	
Brightness	425	cd/m ²
Backlight unit	LED	

3. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage	VDD	-0.3		4	V	GND=0
Logic Signal Input Level	Vı	-0.3		4	V	
LED Current	Ι _L		40		mA	(1)(2)(3)
LED voltage	V _L		19.8		V	(1)(2)(3)
Operating Temperature	Tops	-20		70	$^{\circ}\!\mathbb{C}$	
Storage Temperature	Tstg	-30		80	$^{\circ}\!\mathbb{C}$	

- Note (1) Permanent damage may occur to the LCD module if it operates beyond this specification. Functional operation should be restricted to the conditions which described under normal operating conditions.
- Note (2) Ta = $25\pm2^{\circ}$ C
- Note (3) Test Condition: LED current 40 mA. The LED lifetime could be decreased if operating IL over 40mA.

4. OPTICAL CHARACTERISTICS

4.1 Optical specification

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Left	ΘL		65	70	-			
Viewing Angle	Right	ΘR	CR≧10	65	70		dog	(4)(4)	
Viewing Angle	Up	Θυ	ON≦ 10	40	50		deg.	(1)(4)	
	Down	ΘD		60	70				
Contrast ratio	Contrast ratio			400	500	-	-	(1)(2)	
Posponso Timo	Rising	T_R		I	8	10	msec	(1)(2)	
Response Time	Falling	T_F	Θ=0	I	17	20	msec	(1)(3)	
Color	White	Wx	Normal	0.26	0.31	0.36		(1)(1)	
chromaticity(CIE1931)	vvriite	Wy	viewing	0.28	0.33	0.38		(1)(4)	
White Luminance (Center)		YL	angle	340	425		cd/m²	(1)(4)(7) (IL=40mA)	
Brightness Uniforn	nity	B _{UNI}		70			%	(5)(7)	

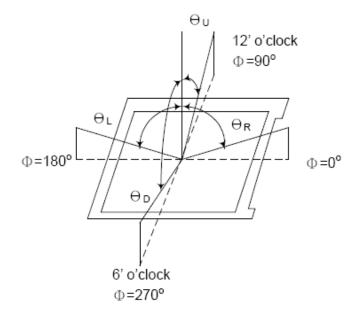
4.2 Measuring Condition

(1) Measuring surrounding: dark room

(2) LED current I_L: 40mA

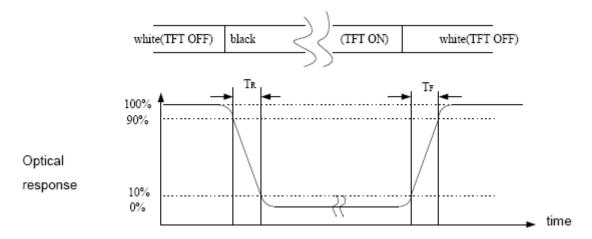
(3) Ambient temperature: 25±2°C

(4) 15min warm-up time.

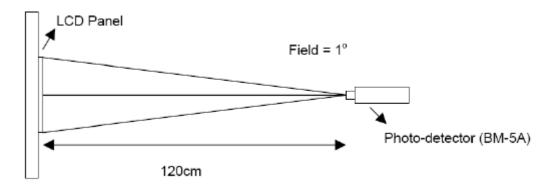

Date: 2015/12/23

4.3 Measuring Equipment

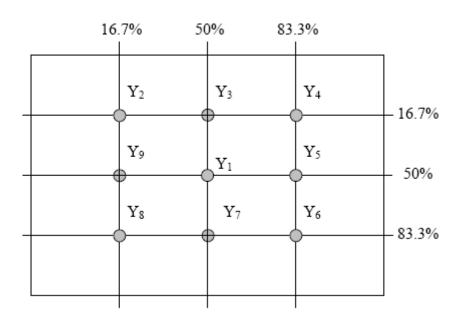
(1) FPM520 of Westar Display technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics.


(2) Measuring spot size: 20 ~ 21 m

Note (1) Definition of Viewing Angle:



Note (2) Definition of Contrast Ratio (CR): it measured at the center point of panel


Note (3) Definition of Response Time : Sun of T_R and T_F

Note (4) Definition of optical measurement setup

Note (5) Definition of brightness uniformity

(Min Luminance of 9 points)

Luminance uniformity = X 100%

(Max Luminance of 9 points)

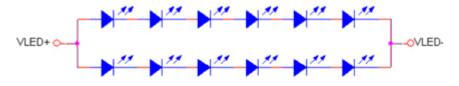
- Note (6) Rubbing Direction (The different Rubbing Direction will cause the different optima view direction.)
- Note (7) Measured at the brightness of the panel when all terminals of LCD panel ate electrically open.

5. ELECTRICAL CHARACTERISTICS

5.1 A TFT LCD Module

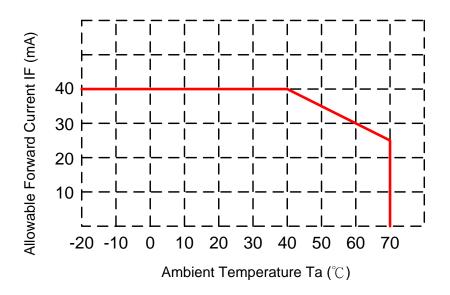
Item	Symbol	Min.	Тур.	Max.	Unit	Note	
Supply Voltage	V_{DD}	3.0	3.3	3.6	٧		
land simple sites	V _{IH}	$0.7V_{DD}$		V_{DD}	V	Note(4)	
Input signal voltage	V _{IL}	0		0.3V _{DD}	٧	Note(1)	
Current of power supply	I _{CC}		55	70	mA	V _{DD} =3.3V	

Note (1): HSYNC, VSYNC, DE, R/G/B Date

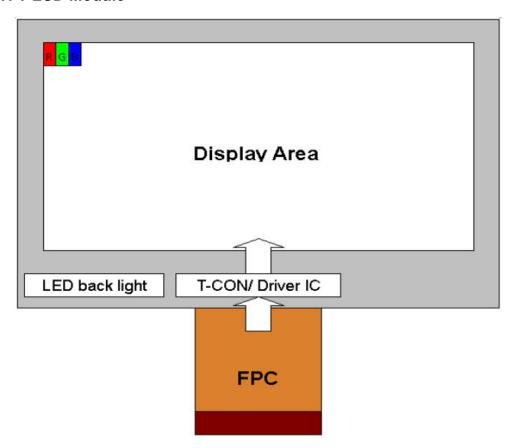

Note (2): GND = 0V

5.2 Back-Light Unit

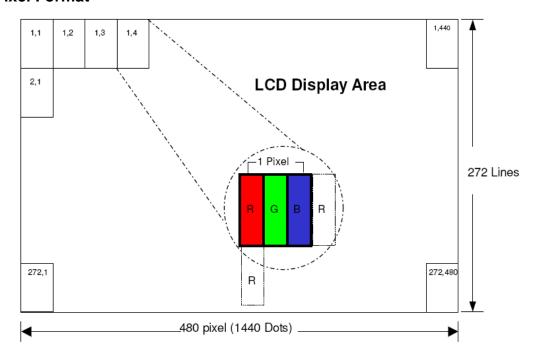
The back-light system is an edge-lighting type with 12 LED.


The characteristics of the LED are shown in the following tables.

Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED current	IL		40		mA	(2)
LED voltage	VL		19.8		V	
Operating LED life time	Hr	20K	25K		Hours	(1)(2)


LED Light Bar Circuit

- Note (1) LED life time (Hr) can be defined as the time when it continuously operates under the condition: Ta=25±3°C, and typical IL value indicates in the above table until the brightness becomes less than 50%.
- Note (2) The "LED life time" is defined as the module brightness which decreases to 50% of original brightness at Ta=25°C and IL=40mA. The LED lifetime could be decreased if it operates IL over 40mA. The constant current driving method is suggested.
- Note (3) The constant current source is needed for white LED back-light driving. When LCM is operated over 60°C ambient temperature, the I_L of the LED back-light should be adjusted to 30mA max.



6. BLOCK DIAGRAM

6.1 A TFT LCD Module

6.2 Pixel Format

7. INTERFACE PIN ASSIGNMENT

FPC connector is used for electronics interface. The recommended model is FH19SC-40S-0.5SH (05) manufactured by HIROSE

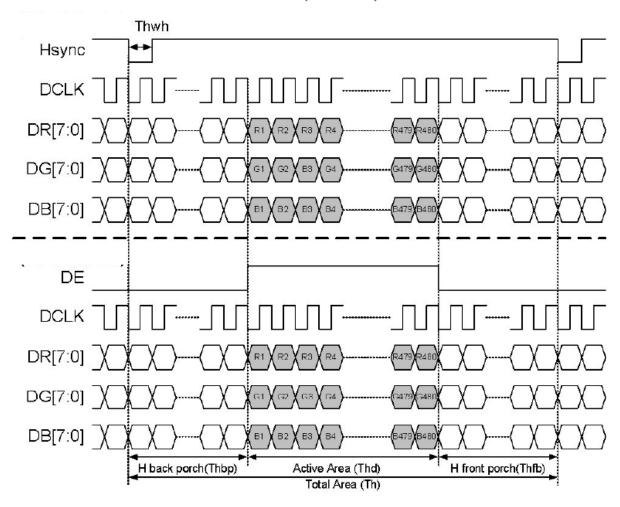
Pin no	Symbol	I/O	Function	Note
1	VLED-	Р	Power for LED Backlight Cathode	
2	VLED+	Р	Power for LED Backlight Anode	
3	GND	Р	Power Ground	
4	VDD	Р	Power Voltage	
5	R0	I	Red Data (LSB)	
6	R1	I	Red Data	
7	R2	I	Red Data	
8	R3	I	Red Data	
9	R4	I	Red Data	
10	R5	I	Red Data	
11	R6	I	Red Data	
12	R7	I	Red Data (MSB)	
13	G0	I	Green Data (LSB)	
14	G1	I	Green Data	

15	G2	I	Green Data	
16	G3	I	Green Data	
17	G4	I	Green Data	
18	G5	I	Green Data	
19	G6	I	Green Data	
20	G7	I	Green Data (MSB)	
21	В0	I	Blue Data (LSB)	
22	B1	I	Blue Data	
23	B2	I	Blue Data	
24	В3	I	Blue Data	
25	B4	I	Blue Data	
26	B5	I	Blue Data	
27	B6	I	Blue Data	
28	В7	I	Blue Data (MSB)	
29	GND	Р	Power Ground	
30	DCLK	I	Pixel Clock Data latched at rising edge of this signal.	
31	DISP	I	Display On(Hi)/ Off(Lo)	
32	HSYNC	I	Horizontal Sync Signal	
33	VSYNC	I	Vertical Sync Signal	
34	DE	I	Data Enable	
35	NC		No connect	
36	GND	Р	Power Ground	
37	X_R	I/O	No Connection	
38	Y_B	I/O	No Connection	
39	X_L	I/O	No Connection	
40	Y_T	I/O	No Connection	

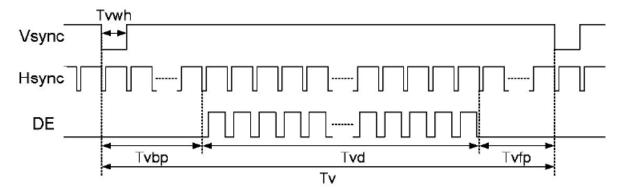
I/O: I: input, O: output, P: power

7.2 Capacitive Touch Panel FPC Descriptions

No.	Symbol	I/O	Description	Remark
1.	GND	-	Ground.(0V)	
2.	SDA	I/O	I2C Interface.	
3.	SCL	I	12C Interface.	
4.	VDD	-	Power Supply for TP controller.(3.3V)	
5.	INT	0	IRQ Terminal.	
6.	XRES		Terminal of Reset TP controller.	


8. INTERFACE TIMING

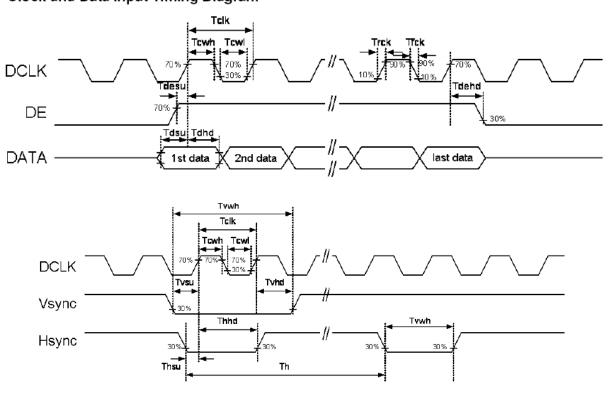
Date: 2015/12/23


8.1 Parallel 24*bit RGB Input Timing Table

Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK frequency	Fclk	8	9	12	MHz	
VSYNC period time	Tv	285	286	399	Th	
VSYNC display area	Tvd		272		Th	
VSYNC back porch	Tvbp	1	2	11	Th	
VSYNC front porch	Tvfp	1	2	227	Th	
VSYNC pulse width	Tvwh	1	10	11	Th	
HSYNC period time	Th	525	525	605	DCLK	
HSYNC display area	Thd		480		DCLK	
HSYNC back porch	Thbp	36	40	255	DCLK	
HSYNC front porch	Thfp	2	2	82	DCLK	
HSYNC pulse width	Thwh	2	2	41	DCLK	

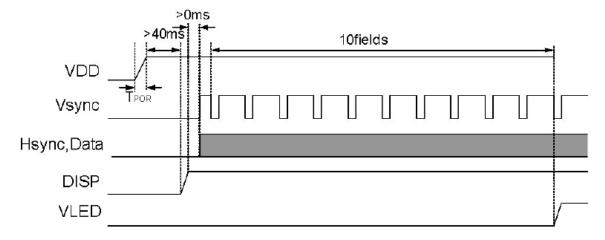
Parallel 24-bit RGB Mode Data Format (DE Mode)

Vertical Input Timing

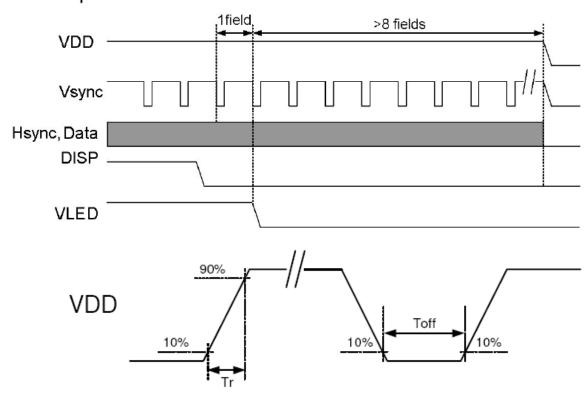


8.2 AC Electrical Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK period time	Tclk	66.7			ns	
DCLK rising time	Trck			6.65	ns	
DCLK falling time	Tfck			6.65	ns	
DCLK pulse duty	Tcwh	40	50	60	%	
DE setup time	Tdesu	10			ns	
DE hold time	Tdehd	10			ns	
HSYNC pulse width	Thwh	2			DCLK	
HSYNC setup time	Thsu	10			ns	
HSYNC hold time	Thhd	10			ns	
VSYNC pulse width	Tvwh	1			Th	
VSYNC setup time	Tvsu	10			ns	
VSYNC hold time	Tvhd	10			ns	
Data setup time	Tdsu	10			ns	
Data hold time	Tdhd	10			ns	


Clock and Data Input Timing Diagram

Date: 2015/12/23



8.3 Power Sequence

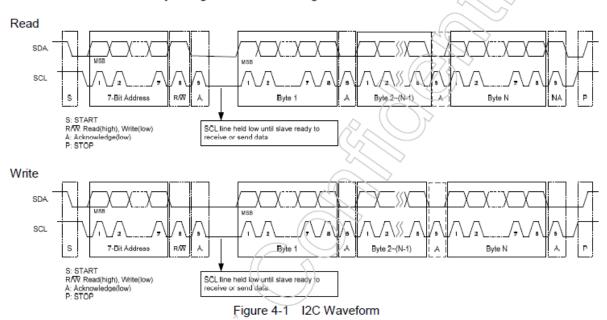
Power On Sequence

Power Off Sequence

VDD power input timing

Notes:

Data include R0~R7, G0~G7, B0~B7, HSD, VSD, DCLK, DE Power on sequence: VDD \rightarrow DISP \rightarrow Data \rightarrow V_{LED}


Power off sequence: DISP \rightarrow V_{LED} \rightarrow Data \rightarrow VDD

VDD power input timing: 0.5ms < Tr < 10ms; Toff > 500ms

9. TP controller

Date: 2015/12/23

ST1633i equipped with I2C provides two wires, serial data (SDA) and serial clock (SCL), to carry transferring information at up to 400 kbit/s(Fast mode). ST1633i plays the slave role in I2C transfer. Both SDA and SCL are bidirectional lines, connected to IOVDD via pull-up resistors. All transactions begin with a START (S) and can be terminated by a STOP (P). 7-bits address follows START to recognize device. Each bye is 8-bits length and followed by an acknowledge bit. A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line while SCL/is HIGH defines a STOP condition. The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Parameter	Symbol	Min.	Max.	Unit
VDD	V _{VDD}	-0.3	+6	V
IOVDD	V _{IOVDD}	-0.3	+6	7M2
Operating Ambient Temperature	TA	-40	+85	(e/
Storage Temperature	Ts	-40	+125	္လြင

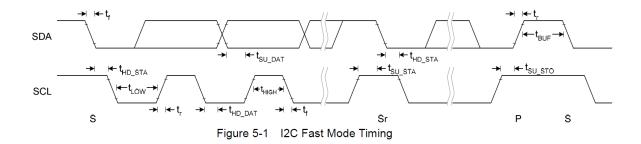


Table 5-3 I2C Fast Mode Timing Characteristic

Conditions: VDD = 3.3V, GND = 0V, $T_A = 25$ °C

Symbol	Parameter	Rating			Unit
Cymbol	T didiffeter	Min. Typ. Max.			
f _{SCL}	SCL clock frequency	0	-	400	kHz
t _{LOW}	Low period of the SCL clock	1.3	-	-	us
t _{HIGH}	High period of the SCL clock	0.6	-	-	us
t _f	Signal falling time	-	-	300	ns
t _r	Signal rising time	-	-	300	ns
t _{SU_STA}	Set up time for a repeated START condition	0.6	-	-	us
t _{HD_STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	0.6	-	-	us
t _{SU_DAT}	Data set up time	100	-	-	ns
t _{HD DAT}	Data hold time	0	-	0.9	us
t _{SU STO}	Set up time for STOP condition	0.6	-	-	us
t _{BUF}	Bus free time between a STOP and START condition	1.3	-	-	us
C _b	Capacitive load for each bus line	-	-	400	pF

Date: 2015/12/23

10. Reliability Test Items

Date: 2015/12/23

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2
Thermal Shock Test	-20°C (30min) ~ 70°C (30min) 100 cycles	1,2
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

Note (1) Condensation of water is not permitted on the module.

Note (2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

11. GENERAL PRECAUTION

11-1 Use Restriction

(1) This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems, and any other application where performance failure could be life-threatening or catastrophic.

11-2 Disassembling or Modification

(2) Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and causing scratches or dust on the display. Ampire does not warrant the module if customers disassemble or modify the module.

11-3 Breakage of LCD Panel

- (1) If LCD panel breaks, and liquid crystal spills out. Do not ingest or inhale liquid crystal, and contact liquid crystal with skin.
- (2) If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- (3) If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- (4) Handle carefully with chips of glass that may cause injury when the glass is broken.

11-4 Electric Shock

- (1) Disconnect power supply before handling LCD module.
- (2) Do not pull or fold the LED cable.
- (3) Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables which prevent it from electric shock.

11-5 Absolute Maximum Ratings and Power Protection Circuit

- (1) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc. Otherwise, LCD module may be damaged.
- (2) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (3) We recommend employing protection circuit for power supply.

11-6 Operation

- (1) Do not touch, push or rub the polarizer with anything which is harder than HB pencil lead.
- (2) Use fingerstalls of soft gloves to keep clean display quality when someone handles the LCD module for incoming inspection or assembly.
- (3) When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- (4) Wipe off saliva or water drops as soon as possible. If saliva or water drops and contacts with polarizer for a long time, they may cause deformation or color fading.
- (5) When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzine or other adequate solvent.

11-7 Mechanism

(1) Please mount LCD module by using mounting holes which arranged in four corners tightly.

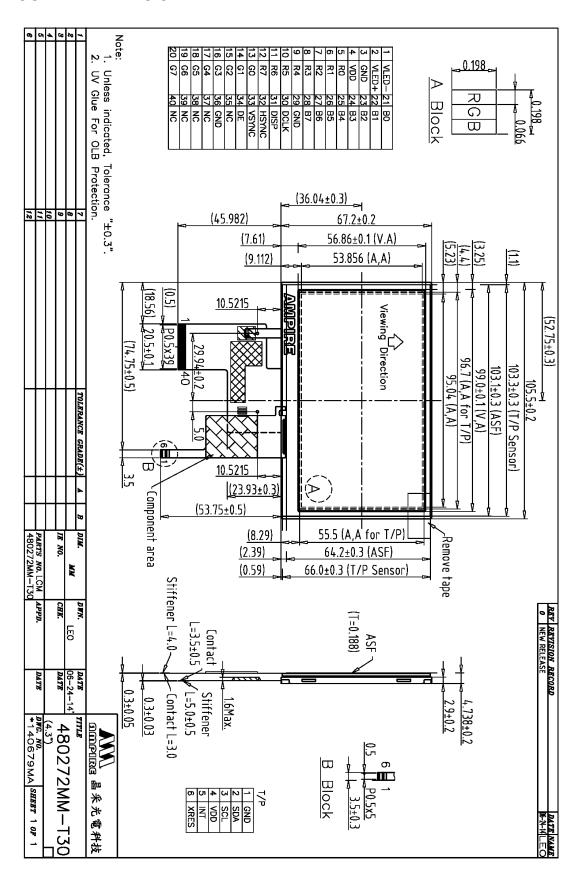
11-8 Static Electricity

- (1) Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- (2) Because LCD module uses CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Person who handles the module should be grounded through adequate methods.

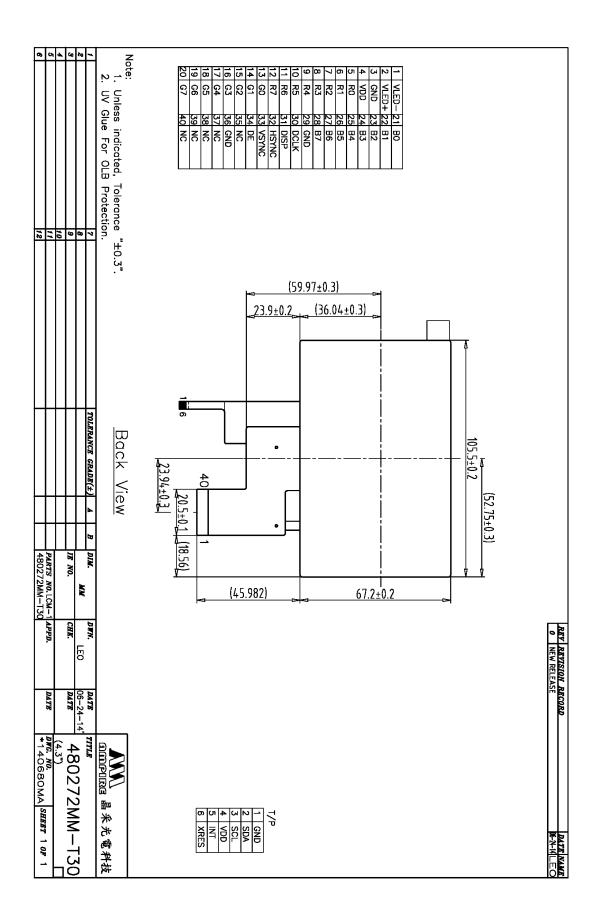
11-9 Strong Light Exposure

(1) The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

11-10 Disposal


(1) When you are disposing LCD module, obey the local environmental regulations.

11-11 Others


Date: 2015/12/23

- (1) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- (2) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

12. OUTLINE DIMENSION

Date: 2015/12/23

